Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone.
نویسندگان
چکیده
Cancellous bone microstructure is an important determinant of the mechanical integrity of vertebrae. The numerous microstructural parameters that have been studied extensively are generally represented as a single value obtained as an average over a sample. The range of the intra-sample variability of cancellous microstructure and its effect on the mechanical properties of bone are less well-understood. The objectives of this study were to investigate the extent to which human cancellous bone microstructure within a vertebra i) is related to bone modulus and stress distribution properties and ii) changes along with age, gender and locations thoracic 12 (T12) vs lumbar 1 (L1). Vertebrae were collected from 15 male (66±15 years) and 25 female (54±16 years) cadavers. Three dimensional finite element models were constructed using microcomputed tomography images of cylindrical specimens. Linear finite element models were used to estimate apparent modulus and stress in the cylinders during uniaxial compression. The intra-specimen mean, standard deviation (SD) and coefficient of variation (CV) of microstructural variables were calculated. Mixed model statistical analysis of the results demonstrated that increases in the intra-specimen variability of the microstructure contribute to increases in the variability of trabecular stresses and decreases in bone stiffness. These effects were independent from the contribution from intra-specimen average of the microstructure. Further, the effects of microstructural variability on bone stiffness and stress variability were not accounted for by connectivity and anisotropy. Microstructural variability properties (SD, CV) generally increased with age, were greater in females than in males and in T12 than in L1. Significant interactions were found between age, gender, vertebra and race. These interactions suggest that microstructural variability properties varied with age differently between genders, races and vertebral levels. The current results collectively demonstrate that microstructural variability has a significant effect on mechanical properties and tissue stress of human vertebral cancellous bone. Considering microstructural variability could improve the understanding of bone fragility and improve assessment of vertebral fracture risk.
منابع مشابه
Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were exami...
متن کاملHuman cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
Increase of trabecular stress variability with loss of bone mass has been implicated as a mechanism for increased cancellous bone fragility with age and disease. In the current study, a previous observation that trabecular shear stress estimates vary along the human spine such that the cancellous tissue from the thoracic 12 (T12)-lumbar 1 (L1) junction experiences the highest trabecular stresse...
متن کاملBiomechanics and mechanobiology of trabecular bone: a review.
Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review a...
متن کاملCancellous Bone Properties and Matrix Content of TGF-β2 and IGF-I in Human Tibia: A Pilot Study
Transforming and insulin-like growth factors are important in regulating bone mass. Thus, one would anticipate correlations between matrix concentrations of growth factors and functional properties of bone. We therefore investigated the relationships of (1) TGF-beta2 and (2) IGF-I matrix concentrations with the trabecular microstructure, stress distribution, and mechanical properties of tibial ...
متن کاملDigital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone.
Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63-90 years) were scanned using micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2011